While end-to-end video-to-audio generation has greatly improved, producing high-fidelity audio that authentically captures the nuances of visual content remains challenging. Like professionals in the creative industries, such generation requires sophisticated reasoning about items such as visual dynamics, acoustic environments, and temporal relationships. We present ThinkSound, a novel framework that leverages Chain-of-Thought (CoT) reasoning to enable stepwise, interactive audio generation and editing for videos. Our approach decomposes the process into three complementary stages: foundational foley generation that creates semantically coherent soundscapes, interactive object-centric refinement through precise user interactions, and targeted editing guided by natural language instructions. At each stage, a multimodal large language model generates contextually aligned CoT reasoning that guides a unified audio foundation model. Furthermore, we introduce AudioCoT, a comprehensive dataset with structured reasoning annotations that establishes connections between visual content, textual descriptions, and sound synthesis. Experiments demonstrate that ThinkSound achieves state-of-the-art performance in video-to-audio generation across both audio metrics and CoT metrics and excels in out-of-distribution Movie Gen Audio benchmark.
Provide voiceovers for the videos generated by the video generation model. All videos are generated by the corresponding video generation model, and all audios are provided by ThinkSound.
Play or pause any video by clicking on it.
Play or pause any video by clicking on it.
Method | Objective Metrics | Subjective Metrics | Efficiency | |||||||
---|---|---|---|---|---|---|---|---|---|---|
FD ↓ |
KLPaSST ↓ | KLPaNNs ↓ | DeSync ↓ | CLAPcap ↑ | CLAPCoT ↑ | MOS-Q ↑ |
MOS-A ↑ | Params | Time(s) ↓ | |
GT | - | - | - | 0.55 | 0.28 | 0.45 | 4.37±0.21 | 4.56±0.19 | - | - |
See&Hear | 118.95 | 2.26 | 2.30 | 1.20 | 0.32 | 0.35 | 2.75±1.08 | 2.87±0.99 | 415M | 19.42 |
V-AURA†| 46.99 | 2.23 | 1.83 | 0.65 | 0.23 | 0.37 | 3.42±1.03 | 3.20±1.17 | 695M | 14.00 |
FoleyCrafter | 39.15 | 2.06 | 1.89 | 1.21 | 0.41 | 0.34 | 3.08±1.21 | 2.63±0.88 | 1.20B | 3.84 |
Frieren†| 74.96 | 2.55 | 2.64 | 1.00 | 0.37 | 0.34 | 3.27±1.11 | 2.95±1.09 | 159M | - |
V2A-Mapper†| 48.10 | 2.50 | 2.34 | 1.23 | 0.38 | 0.32 | 3.31±1.02 | 3.16±1.04 | 229M | - |
MMAudio | 43.26 | 1.65 | 1.40 | 0.44 | 0.31 | 0.40 | 3.84±0.89 | 3.97±0.82 | 1.03B | 3.01 |
ThinkSound | 34.56 | 1.52 | 1.32 | 0.46 | 0.33 | 0.46 | 4.02±0.73 | 4.18±0.79 | 1.30B | 1.07 |
w/o CoT Reasoning | 39.84 | 1.59 | 1.40 | 0.48 | 0.29 | 0.41 | 3.91±0.83 | 4.04±0.75 | 1.30B | 0.98 |
ThinkSound outperforms all baselines across most objective metrics and all subjective metrics. Compared to the strongest baseline (MMAudio), our model achieves substantial improvements in audio quality and semantic alignment, while maintaining comparable temporal synchronization performance on the objective synchronization metric.
To better understand the contribution of each component in ThinkSound and to validate the effectiveness of our design choices, we conduct comprehensive ablation studies on the VGGSound test set. We mainly focus on: (1) text encoding strategies and (2) multi-modal integration mechanisms. For more ablation and exploratory results, refer to Supplementary Materials D.
We evaluate different text encoding strategies with or without CoT reasoning. The results are shown in Table 1. First, CoT reasoning substantially improves audio fidelity—for example, FD improves from 39.84 to 37.65 when comparing CLIP-only to T5 with CoT. Second, integrating contrastive features from CLIP with contextual reasoning from T5 further improves performance, reducing both KLPaSST and KLPaNNs.
Method | FD ↓ | KLPaSST ↓ | KLPaNNs ↓ | DeSync ↓ | CLAP ↑ |
---|---|---|---|---|---|
CLIP | 39.84 | 1.59 | 1.40 | 0.48 | 0.41 |
T5 (CoT) | 37.65 | 1.54 | 1.35 | 0.46 | 0.44 |
CLIP + T5 | 34.56 | 1.52 | 1.32 | 0.46 | 0.46 |
We investigate different ways to integrate video and audio features before feeding them into the single-stream transformer. As shown in Table 2, element-wise addition of video and audio features performs better than audio-only input, especially in synchronization (DeSync reduced from 0.50 to 0.46). Moreover, the gated fusion mechanism outperforms both alternatives across all metrics.
Integration | FD ↓ | KLPaSST ↓ | KLPaNNs ↓ | DeSync ↓ | CLAP ↑ |
---|---|---|---|---|---|
audio only | 37.13 | 1.58 | 1.37 | 0.50 | 0.43 |
linear video | 38.96 | 1.58 | 1.38 | 0.46 | 0.45 |
gated video | 34.56 | 1.52 | 1.32 | 0.46 | 0.46 |
We compare three model sizes of ThinkSound: Large (1.3B), Medium (724M), and Small (533M). The results are shown in Table 3. The Large model achieves the best performance across all metrics. As model size decreases, performance degrades substantially, highlighting the necessity of adequate model capacity for effective audio generation.
Size | FD ↓ | KLPaSST ↓ | KLPaNNs ↓ | DeSync ↓ | CLAPCoT ↑ |
---|---|---|---|---|---|
Small | 40.80 | 1.64 | 1.38 | 0.46 | 0.41 |
Medium | 36.80 | 1.56 | 1.34 | 0.46 | 0.44 |
Large | 34.56 | 1.52 | 1.32 | 0.46 | 0.46 |
The code and dataset will be released soon.